If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = -3n2 + 11n + 4 Reorder the terms: 0 = 4 + 11n + -3n2 Solving 0 = 4 + 11n + -3n2 Solving for variable 'n'. Combine like terms: 0 + -4 = -4 -4 + -11n + 3n2 = 4 + 11n + -3n2 + -4 + -11n + 3n2 Reorder the terms: -4 + -11n + 3n2 = 4 + -4 + 11n + -11n + -3n2 + 3n2 Combine like terms: 4 + -4 = 0 -4 + -11n + 3n2 = 0 + 11n + -11n + -3n2 + 3n2 -4 + -11n + 3n2 = 11n + -11n + -3n2 + 3n2 Combine like terms: 11n + -11n = 0 -4 + -11n + 3n2 = 0 + -3n2 + 3n2 -4 + -11n + 3n2 = -3n2 + 3n2 Combine like terms: -3n2 + 3n2 = 0 -4 + -11n + 3n2 = 0 Factor a trinomial. (-1 + -3n)(4 + -1n) = 0Subproblem 1
Set the factor '(-1 + -3n)' equal to zero and attempt to solve: Simplifying -1 + -3n = 0 Solving -1 + -3n = 0 Move all terms containing n to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + -3n = 0 + 1 Combine like terms: -1 + 1 = 0 0 + -3n = 0 + 1 -3n = 0 + 1 Combine like terms: 0 + 1 = 1 -3n = 1 Divide each side by '-3'. n = -0.3333333333 Simplifying n = -0.3333333333Subproblem 2
Set the factor '(4 + -1n)' equal to zero and attempt to solve: Simplifying 4 + -1n = 0 Solving 4 + -1n = 0 Move all terms containing n to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + -1n = 0 + -4 Combine like terms: 4 + -4 = 0 0 + -1n = 0 + -4 -1n = 0 + -4 Combine like terms: 0 + -4 = -4 -1n = -4 Divide each side by '-1'. n = 4 Simplifying n = 4Solution
n = {-0.3333333333, 4}
| y+2y-7=5y+1 | | x^2+kx+5=0 | | 2x^2+20x+82=0 | | -6(-4)= | | 7+3(6-4n)=-2n | | y+2=0.923(x+7) | | 10x+2y=-6 | | x^2-14x=11 | | ln(3x+7)=ln(6x-2) | | -(35)= | | 1960=4.9t(50-t) | | 0=4.9t(400-t) | | 5x+4x^2-57=0 | | y+2=0.92(x+7) | | 572-(-25)= | | 15y=3(y+8) | | x=1/2(7x-20) | | m=5a | | 6(-10)(-3)= | | 5a^2-7ab-6b^2=0 | | y+2=12(x+7) | | 67-(4x+3)=4(x+7)+x | | 7+4(-8)= | | t=m+2m | | 6+9=3+6+c | | 6x^2+5x-3=0 | | 6(-7)-(-13)= | | 4ln(7x)=12 | | 196=16 | | 196= | | 0.7+y=-1034 | | 4x^2+16x=9 |